Month: December 2016

The CSIC Institutes of Materials Science of Barcelona and Aragón together with Gamesa Innovation and Technology develop the first prototype of an electric Superconducting generator for medium power wind turbines (2MW)

• The prototype is the first in the world to be used in medium-power wind turbines.
• The use of Superconducting materials simplifies the system obtaining greater reliability and greater efficiency thus reducing maintenance needs.
• This breakthrough opens the way to a new conception of wind turbines and offers a new perspective to the wind energy industry.

Monday, December 12, 2016. Gamesa Innovation and Technology, a leading Spanish technology company in the wind energy industry, the Institute of Materials Science of Barcelona (ICMAB-CSIC) and the Institute of Materials Science of Aragón (ICMA-CSIC), partially funded by the Spanish Ministry of Economy and Competitiveness (Retos Colaboración RTC-2014-1740-3), have successfully completed the first phase of development of the first medium speed Superconducting generator to be used in conventional medium power wind turbines (2MW).

It is a generator that, being built using Superconducting materials, can rotate at a lower rotation speed (one third of the usual) thus reducing the weight of the multiplier gearbox significantly as well as the inertia of the system simplifying and lightening all the mechanical assembly or drivetrain and the structure itself.

The electric Superconducting generator is the result of an innovative architecture with a lower use of cooper and an iron-less magnetic circuit which results in a greater efficiency and, consequently, a much lower generation of heat thus drastically reducing cooling requirements.

The advantages of this new type of electric generator that uses Superconducting materials compared to the conventional generators are diverse: it simplifies the entire mechanical structure of the wind turbine as well as the electronic system; simplifies assembly and maintenance, reduces the risk of breakdowns; the time of intervention for maintenance is extended; and, in the near future, the cost will be reduced according to the rapid evolution of Superconducting materials.

The future implementation of this type of electric Superconducting generator in the wind turbines opens a new perspective to the wind energy industry, making windmills more efficient and robust and reducing the costs of energy production.

After four years of intense collaboration between the three entities, the culmination of the first phase of the project in early 2016 with the successful construction of this prototype and the corresponding trials has become a clear success case of Technology Transfer from research in superconducting materials to its possible applications in the generation of wind energy.

ICMAB-CSIC, ICMA-CSIC and Gamesa Innovation and Technology continue to collaborate in order to carry out field trials to offer new innovative technological solutions in this sector.

Superconducting YBa2Cu3O7–δ Nanocomposites Using Preformed ZrO2 Nanocrystals: Growth Mechanisms and Vortex Pinning Properties


Katrien De Keukeleere, Pablo Cayado, Alexander Meledin, Ferran Vallès, Jonathan De Roo, Hannes Rijckaert, Glenn Pollefeyt, Els Bruneel, Anna Palau, Mariona Coll, Susagna Ricart, Gustaaf Van Tendeloo, Teresa Puig, Xavier Obradors, Isabel Van Driessche. Advanced Electronic Materials. DOI: 10.1002/aelm.201600161

Although high temperature superconductors are promising for power applications, the production of low-cost coated conductors with high current densities—at high magnetic fields—remains challenging. A superior superconducting YBa2Cu3O7–δ nanocomposite is fabricated via chemical solution deposition (CSD) using preformed nanocrystals (NCs). Preformed, colloidally stable ZrO2 NCs are added to the trifluoroacetic acid based precursor solution and the NCs’ stability is confirmed up to 50 mol% for at least 2.5 months. These NCs tend to disrupt the epitaxial growth of YBa2Cu3O7–δ, unless a thin seed layer is applied. A 10 mol% ZrO2 NC addition proved to be optimal, yielding a critical current density JC of 5 MA cm−2 at 77 K in self-field. Importantly, this new approach results in a smaller magnetic field decay of JC(H//c) for the nanocomposite compared to a pristine film. Furthermore, microstructural analysis of the YBa2Cu3O7–δ nanocomposite films reveals that different strain generation mechanisms may occur compared to the spontaneous segregation approach. Yet, the generated nanostrain in the YBa2Cu3O7–δ nanocomposite results in an improvement of the superconducting properties similar to the spontaneous segregation approach. This new approach, using preformed NCs in CSD coatings, can be of great potential for high magnetic field applications.

Institut de Ciència de Materials de Barcelona ICMAB CSIC


Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
+34 935 801 853 ext 371